If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+8k=0
a = 5; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*5}=\frac{-16}{10} =-1+3/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*5}=\frac{0}{10} =0 $
| 30*3+3d=135.97 | | X=3a-1 | | 39x+10=15x+100 | | 7d/14=3 | | ^ =11,000+18,000x | | -10.74=l-(-11) | | 2x+38+3x+31+x=180 | | 4x-6+2x+40=90 | | 5x=4.8-36 | | |-9m|=45 | | 30=-4.9t^2+30t+14.4 | | 25+8a=35+6a | | -4x+12+x+15=3 | | x/6–10=2 | | −7x−5=11 | | 4^x=189 | | 3x+1=9x/8 | | 2–x=x–8 | | 8m+6+7m=-9 | | 2c/3=4 | | 6p−(5p+5)=−8−2(p+12) | | 30=-4.9(t)^2+30(t)14.4 | | (c-1)(c+8)=0 | | 2^2^x^+1=20 | | 2k/2+7=15 | | 1/5p+7=12 | | −x+4x−9=8x+6 | | 3x,10=5x,-8 | | 14=l-(-12) | | 14=z−(-12) | | 0=-1/2x+16x-96 | | 3x-6-3x+20=0.5x+10 |